PhotosynQ at Feed the Future Legume Innovation Lab (LIL) Conference in Burkina Faso August 13-18, 2017

Following the PhotosynQ Workshop (see Dan’s post), we had moved to the LIL conference site at Laico Ouaga 2000, a high security hotel/conference venue outside of Ouagadougou city.  “Feed the Future” is a program funded by USAID under the US government’s Global Hunger and Food Security Initiative.  This program has been engaging many universities, institutions and private organizations in the US, Africa and Central/South America to improve the quality and management of legume, and contributing to the well-beings of local people. Michigan State University (http://legumelab.msu.edu/) is one of the leading institutions contributing researches and new technologies to the world.

One of the designated official languages being French, we had a simultaneous translation through headphone at this conference. The last time when I had to use French in daily basis was almost 20 years ago. Listening to the scientific talks was manageable, but my speaking ability was quite embarrassing. Another challenge was internet connectivity. As Dan mentioned, we had to manage the workshop with almost no internet connection. We were hoping to have a better connection at this best hotel in Burkina Faso, but unfortunately, it seemed the system could not handle a large traffic at once. The conference participants expressed that they had never experienced this in the past anywhere in Africa. It seems it was an isolated incidence, but we came up with some better solutions for the future.

  PhotosynQ booth (From right: Dan, Frank and Atsuko)

 Presentation by Dr. Irvin Widders, Director of Legume Innovation Lab, MSU. PhotosynQ was mentioned as one of the highlights of the ‘Feed the Future’ program.

At the last LIL conference held at Livingston, Zambia, Dave Kramer and Dan TerAvest presented the PhotosynQ project using MultispeQ Beta. This year in Burkina Faso, not only the people from Kramer Lab (Dave, Dan, Donghee Hoh, Isaac Osei-Bonsu and me), but also our PhotosynQ collaborators (Dr. Isaac Dramadri in Uganda, Dr. James Kelly with Dr. Jesse Traub and Dr. Wayne Loescher of MSU, and Dr. Kelvin Kamfwa of U of Zambia) presented more detailed and sophisticated data showing the correlations among photosynthesis, plant responses and gene expressions. It was very encouraging for us to see more people started thinking that the PhotosynQ platform and hand-held devices are useful and practical to the broad applications.

We are very excited about the new challenges, collaborations and long-lasting friendships. And we all hope to see you again!

Who’s using the MultispeQ? Let’s see…

As we approach the next version of the MultispeQ, I wanted to share stories from a few of our beta testers – Matt, Karen, and Kay from the MSU Kellogg Biological Station, Jeremy Harbinson from the University of Wageningen, and Jesse Traub from Michigan State University.  You can find even more stories here.  Hope this sparks some interesting ideas for applications in your lab, home, farm, work, or play 🙂

Kellogg Biological Station

Matthew Carey (REU student), Karen Stahlheber (postdoc) and Kay Gross (KBS director), Ecologists

Matthew Carey, measuring grass at Kellogg Biological Station
Matthew Carey, measuring grass at Kellogg Biological Station

Our group is interested in the response of switchgrass (Panicum virgatum) varieties to drought, and how that interacts with fertilizer use. We installed rain reduction shelters on fields planted with switchgrass ~6 years ago and managed either with or without fertilizer. These shelters reduce available soil moisture and simulate drought conditions that might occur with future global change. Throughout the summer, we monitored plant growth, chlorophyll fluorescence, xylem tension, and the abundance/diversity of mycorrhizae (fungi that live in symbiosis with plant roots). The eventual goal (after several field seasons) is to understand how the interactions between fertilizer application and arbuscular mycorrhizae diversity affect ecosystem services such as productivity, pathogen tolerance, drought tolerance, and soil carbon storage.PhotosynQ has been a great asset to our project because it allows us to measure any stress the plants may experience due to high light/low water conditions throughout the summer. By measuring Fv/Fm in the early hours of the morning we can understand if plants underneath the shelters have suffered damage to their photosynthetic machinery compared to control plants receiving ambient rainfall. We also can use the devices during the day to assess general photosynthetic performance and see if that differs between varieties or is changed by fertilizer use.

If PhotosynQ is successful, it could allow farmers of cellulosic biofuel crops like switchgrass to use the same tools to monitor their plants for stress or for responses to fertilizer.

Plant Sciences Department, University of Wageningen

Jeremy Harbinson, Plant Physiologist / University Lecturer

Jeremy Harbinson
Jeremy Harbinson

We try to understand better the operation, regulation and limitation of photosynthesis in vivo, both from physiological and genetic perspectives. We plan to use the PhotosynQ in teaching and as a tool for the more or less routine monitoring of leaf-level photosynthesis of plants in the field. The PhotosynQ concept opens many doors. In terms of eco or environmental physiology – or phenotyping, particularly that of photosynthesis, it enables large scale data collection in a way that has previously not been possible. It helps close the gap between the diversity for physiological responses encountered in the field due to environmental and genetic reasons and the time required to get good data relating to these responses. Low-cost, fast, and measuring a large number of processes makes many things possible that cannot be done with existing instruments which are expensive, often slow and limited in what they can measure. It is a revolutionary concept.

Department of Horticulture, Michigan State University

Jesse Traub, PhD candidate

Jesse Traub, MSU Horticulture
Jesse Traub, MSU Horticulture

We are investigating physiological differences among contrasting dry bean genotypes in their response to drought and heat stress. We are especially focusing on the response of photosynthetic parameters to these stresses. The PhotosynQ platform enabled us to screen large amounts of germplasm to determine at what severity of stress different bean genotypes started to become damaged.  If PhotosynQ became a standard tool for my discipline of plant physiology and plant breeding, it would provide an easy way to compare otherwise unrelated experiments and sets of data. This would be great for the reproducibility of experiments! I admire that the PhotosynQ project has been committed to making their hardware, software, and data freely accessible to all to use, learn from, and modify. I hope such sentiments continue to grow in the academic world.

This is just a few of the 100 or so people who used the MultispeQ Beta

You can find a few more stories about using PhotosynQ to develop tools for corals, identify agricultural best practices in Malawi, optimizing light in greenhouses in the Ukraine, and detect disease in soybeans in Michigan.  Next time, a progress report on the MultispeQ v1.0!

CoralspeQ Update — “Global Coral Bleaching Project”

Hey guys – as an interlude to updates about the MultispeQ v.1.0 device, here’s an exciting post from Atsuko Kanazawa about the CoralspeQ – a different PhotosynQ-connected device which measures coral bleaching.  The CoralspeQ team is currently raising money to alpha test their device and concept.  If you’re passionate about our oceans and understanding them better, go support their efforts!  More MultispeQ updates next time.  Till then, enjoy! — Greg

 

Global Coral Bleaching Project

-Atsuko Kanazawa

Some of you have already read recent news articles (see the Washington Post and the New York Times) about the severe effect of El Niño in 2015 and 2016.

Termed “Godzilla El Niño,” a weather pattern that will warm the oceans where many coral reefs live, leading to a catastrophic coral bleaching event would be the worst in 20 years. On October 8, 2015, National Oceanic and Atmospheric Administration (NOAA) announced “third ever global coral bleaching event on record” (see NOAA news for details).As the oceans warm and acidify, corals bleach, losing the photosynthetic algae that give them energy. Bleaching then leads to loss the diverse and beautiful life that lives in the coral reefs.

Photo by Aaron Florn
Photo by Aaron Florn

The Godzilla El Niño may also be our best chance to understand why some corals are more sensitive, why some recover and other can’t, and thus what we can do, if anything, to fix the problem. A major problem is that the tools needed to probe corals have not been available to most of the world.

The “Global Coral Bleaching Project” was first conceived by Prof. Peter Ralph at University of Technology at Sydney in Australia, Prof. David Kramer at Michigan State University, and Dr. Atsuko Kanazawa also at MSU, who saw the potential of PhotosynQ – engaging the local community world-wide to monitor and to collect the vast on-site data. To respond to the proposed project, the Kramer Lab at MSU, and our colleagues around the world, are developing a first-of-its-kind technology that will allow researchers, park rangers and citizen scientists all over the world to probe coral health and the factors that may affect bleaching. Data from field sites is instantly uploaded to the cloud where people around the world can access and analyze it. This data will help to understand the coral bleaching process, and lead to new coral conservation approaches.

You can help support this important research by supporting our crowd-funding campaign here at this link

Prof. Peter Ralph using a modified MultispeQ on corals at Heron Island, Great Barrier Reef
Prof. Peter Ralph using a modified MultispeQ on corals at Heron Island, Great Barrier Reef

CoralspeQ Technical Updates

The current CoralspeQ prototype version 1.5 has micro spectrometer, various LEDs and BGR light sensor, controlled by Teensy 3.1. At this stage, we are still using a store-bought non-metal electrical conduit box that is larger than the first prototype to house a full-size board and batteries (see Figure 1).
We have tested how well it was water-proofed. It could withstand in the depth of 4.3 m/ 14 ft for at least 30 min with sealer/gasket/rid modifications.  CoralspeQ is controlled by an Android phone with Bluetooth. We found a reasonably-priced water-proofed case for the phone. It is claimed to withstand to the depth of 100 ft. It worked well in 14 ft. Figure 2 (A and B) shows a device strapped to a broom at the bottom of 14 ft diving pool. A black square at the bottom corner is a phone in a water-proof case.

Figure 1, 2A, 2B
Figure 1, 2A, 2B

Additionally, we have tested the Bluetooth function in salt water. The Android phone screen covered with a bag of baby oil could send signal to CoralspeQ 1.5 and activate the measurement. Same as MultispeQ, CoralspeQ also needs to be turned on by pushing a start button, but under water. Magnetic reed switch is installed inside of the box, and therefore, it can be turned on from outside using a magnet without opening the box.

The next step is to test them in the field. Currently, 6 different LEDs are installed in different combinations in 3 devices. The field measurements will tell us which wavelengths would be more useful to identify the conditions of both coral and symbiotic algae. Also, we are expecting the modifications of device based on the field trial for the next version.