User Page | PhotosynQ Website

User Page | Website Update

We are working on making your user page the central hub for all the information regarding your work with PhotosynQ.

We have found that one of the most useful features for any PhotosynQ project is the Dashboard, which allows you to quickly view important project results on one page.

We are currently using the same approach to allow users to have a personal dashboard that makes all of their PhotosynQ information (e.g. projects, protocols, macro’s etc) available in one place.

If you haven’t visited your user page recently, you should try it now, we think you’ll be pleasantly surprised! To get there, click on your name in the top right hand corner of the PhotosynQ webpage, this leads to your user page.

Over the past couple of months we have made a number of changes to this page that should really help you navigate through your PhotosynQ projects and collaborations.

user page image

Recent Activity

This change has been around for a while, but if you haven’t been checking in you may have missed it. We have now added your most recent projects, collaborations and comments to your user homepage. This should help you navigate quickly to your most active projects, instead of always going through the PhotosynQ search bar.

Side Menu

The side menu now contains a link to the instrument page (see below), your invitations, and the last two updates posted on PhotosynQ.

About – Contributions

We replaced the bar chart showing your contributions over the past year and doughnut chart with a calendar histogram. This view will provide more details about when and how many contributions you made over the last year.

Contributions over the last 12 months, shown as a calendar heat map.
Contributions over the last 12 months, shown as a calendar heat map.

Protocols & Macros

Do you make any of your own protocols and macros? If you do, now you can see all of your protocols and macros, sorted alphabetically and by their category, right from your user page.


Now you can see all the instruments you have used in the past. It will show some basic information, based on the last measurement, including the firmware version, the total number of contributions (you and others, if you borrowed/lent the instrument) and the last time the instrument was seen (based on the latest submitted measurement).

Basic information panel for an instrument
Basic information panel for an instrument

If you have questions or need support, please check our forum or send us an email to

New Data Selection & Plotting | Website Update

Data Selection & Plotting | Website Update

This is just a small update to the data viewing tool on, but we think, it will be very helpful for your data analysis.

Data Selection


With switching the plotting library to Plotly we introduced selecting a series by using the lasso tool or box selection tool to generate a new series, instead of using the filters (Goodbye Flot, Hello Plotly | Other Website Updates). Now you can also use the inverse of a selection as a new series or generate both at the same time. Just check the appropriate box in the dialog before you create a new series or download selection.

The new selection dialog allows you to not only select a range of markers as a new series, but also the inverse of your selection or even both as new series.
The new selection dialog allows you to not only select a range of markers as a new series, but also the inverse of your selection or even both as new series.


Now you can also generate a new series by drawing a rectangle or a polygon around markers on the map. When viewing graphs you can use the selection tools to create new series of data selected, or the inverse.

Select a group of markers by dragging a rectangle or polygon to create a new series (buttons in the center top). Similar to the plot, the map as well allows you to use the selection, the inverse selection or both as new series.
Select a group of markers by dragging a rectangle or polygon to create a new series (buttons in the center top). Similar to the plot, the map allows you to use the selection, the inverse selection or both as new series.


A new panel is available, which lists all the Data Quality Issues, which were found in your project, listing each issue with a count of affected measurements. You can now generate a series containing these measurements for an easier screening and potential flagging.


What’s in my selection?

When you are working with a scatter plot and you are using a color gradient as a third dimension, it might be hard to tell, if for example, a certain crop variety is enriched in your selection. Now you can use the Enrichment feature to plot fractions of a category for each series.

Just select the bar-graph tab, check Enrichment and choose a category. The bar-graph will display the fractions as to the following selections:

  • category / series Will show the fraction of category appearances in each series compared to the total appearances in each series.
  • category / total Will show the fraction of category appearances in each series compared to the total appearances.

2D Heat-Map

The 2D Heat-Map will now adjust based on the selected series and not only show the map for all all series combined.


If you save photos along with your measurements, no matter if it is a project question or if you take them as notes, inside the spreadsheet you see a small image icon. When you hover over the icon, you will see the picture instead on top of your list of series. The same is true for long arrays of numbers. Instead of those, you now see a chart icon and hovering over it, will bring up a line graph.

Copying the data still works the same. You will get all the data or the link to the picture.

The “ID” and “Series” columns are now sticky and will stay visible when scrolling vertically in the table.

Statistics: Chi Square Test

We added another statistical test, the Chi Square test. This allows you to compare categorical data.


The functionality of the dashboard got extended a little bit. The graphs you save to the dashboard are now images, so you can simply save them to you hard-drive.

Hiding Advanced Parameters

As I am sure you’ve noticed by now, we at PhotosynQ like to provide you with a lot of data. Not just the primary parameters (e.g. Phi2, PhiNPQ, Light Intensity (PAR), time, etc) that you are interested in, but also many other parameters that may go into calculating those parameters. However, viewing all of this data in the plotting tool or spreadsheet view may be a bit much for some users.

We have now added a feature that allows users to decide whether or not they want to view the primary parameters and Project questions together with the Advanced parameters (e.g. absorbance_420, FvP_over_FmP, etc) or if they would prefer to hide the advanced parameters. The new default setting is to hide the advance parameters. If you want to view these parameters, select the settings icon near the Add Series and click the Show Advanced Parameters checkbox. Now all of the parameters output by the MultispeQ will be available in the Plot Data, Spreadsheet, Map and Statistics tabs.

Advanced data

If you have questions or need support, please check our forum or send us an email to


New PhotosynQ Related Publication

Check out the new publication in the American Journal of Plant Sciences, using the MultispeQ and PhotosynQ Platform (10.4236/ajps.2017.84050)

Response of Cowpea Genotypes to Drought Stress in Uganda

Saul Eric Mwale, Mildred Ochwo-Ssemakula, Kassim Sadik, Esther Achola, Valentor Okul, Paul Gibson, Richard Edema, Wales Singini, Patrick Rubaihayo

Moisture stress is a challenge to cowpea production in the drought prone areas of eastern and north eastern Uganda, with yield losses of up to 50% reported. Genotypes grown by farmers are not drought tolerant. This study was therefore, undertaken at Makerere University Agricultural Research Institute Kabanyolo to identify cowpea genotypes tolerant to drought. Thirty cowpea accessions comprising of Ugandan landraces and released varieties, Brazilian lines, Makerere University breeding lines, elite IITA germplasm and seven IITA drought tolerant lines as checks were screened for drought tolerance at vegetative and reproductive stages. The experiment was designed as a 2 × 37 factorial and laid out in a split-plot arrangement, 37 genotypes of cowpea at two soil moisture stress levels (T1, no stress and T2, severe stress) with all factorial combinations replicated two times in a screen house. The genotypes showed considerable variability in tolerance to drought. Genotypes were significantly different for chlorophyll content (P ≤ 0.01), efficiency of photosystem II (P ≤ 0.05), non-photochemical quenching (P ≤ 0.05), recovery (P ≤ 0.01), delayed leaf senescence (P ≤ 0.01), grain yield (P ≤ 0.01), 100 seed weight (P ≤ 0.05), number of pods per plant and number of seeds per pod (P ≤ 0.001). There was a highly significant positive correlation between chlorophyll content and efficiency of photosystem II (r = 0.75, P ≤ 0.001) implying that chlorophyll content and efficiency of photosystem II could be used as efficient reference indicators in the selection of drought tolerant genotypes. Genotypes SECOW 5T, SECOW 3B, SECOW 4W, WC 30 and MU 24 C gave relatively high yields under stress and no stress conditions, maintained above mean chlorophyll content, efficiency of photosystem II and had good recovery scores from stress and thus were tolerant to drought stress induced at both vegetative and reproductive stages.

More PhotosynQ related publications are available here

New PhotosynQ Related Publication

Check out the new publication in Photosynthesis Research, using the MultispeQ and PhotosynQ Platform (10.1007/s11120-017-0449-9)

Faster photosynthetic induction in tobacco by expressing cyanobacterial flavodiiron proteins in chloroplasts

Rodrigo GómezNéstor Carrillo, María P. Morelli, Suresh Tula, Fahimeh Shahinnia, Mohammad-Reza Hajirezaei, Anabella F. Lodeyro

Plants grown in the field experience sharp changes in irradiation due to shading effects caused by clouds, other leaves, etc. The excess of absorbed light energy is dissipated by a number of mechanisms including cyclic electron transport, photorespiration, and Mehler-type reactions. This protection is essential for survival but decreases photosynthetic efficiency. All phototrophs except angiosperms harbor flavodiiron proteins (Flvs) which relieve the excess of excitation energy on the photosynthetic electron transport chain by reducing oxygen directly to water. Introduction of cyanobacterial Flv1/Flv3 in tobacco chloroplasts resulted in transgenic plants that showed similar photosynthetic performance under steady-state illumination, but displayed faster recovery of various photosynthetic parameters, including electron transport and non-photochemical quenching during dark–light transitions. They also kept the electron transport chain in a more oxidized state and enhanced the proton motive force of dark-adapted leaves. The results indicate that, by acting as electron sinks during light transitions, Flvs contribute to increase photosynthesis protection and efficiency under changing environmental conditions as those found by plants in the field.

More PhotosynQ related publications are available here

Intelligent Information Technologies in Education and Science – Ukraine


On October 18, 2017, the Interdisciplinary Workshop on the dissemination of knowledge on “Intellectual Information Technologies in Education and Science” took place at the Faculty of Chemistry and Biology of the Ternopil National Pedagogical University (TNPU).

The co-organizers of this event were Andriy and Natalia Hertz, employees of the Department of General Biology and Methodology of Natural Sciences Teaching and the Department of Botany and Zoology (Faculty of Chemistry and Biology of TNPU).

According to the program, a demonstration of the possibilities of IT solutions in biological, educational and pedagogical research took place. 

In particular, the on-line PhotosynQ platform was presented as a web tool for an integrated assessment of the physiological state of plants. 

Information was disseminated on how the MultispeQ can measure, collect and analyze photosynthesis data in field and laboratory conditions.

The focus was on the openness and flexibility of the PhotosynQ platform and the development of educational tools through it, and more.

The students and faculty all wished to have the opportunity to work with MultispeQ and PhotosynQ and to evaluate the condition of plants for themselves.

More Info [English] | More Info [Original]

The NPQ(T) Parameter

Measuring non-photochemical quenching in a few seconds without an initial long dark acclimation.

Over the past 3 years, many MultispeQ users have noticed that the NPQ(T) parameter (and ΦNPQ) can be a powerful predictor of plant stress, either biotic or abiotic. The NPQ(T) parameter has also correlated with crop yields in some PhotosynQ projects, like this project from Malawi.

Indeed, one of the big breakthroughs with the MultispeQ is the ability to estimate NPQ (Non-Photochemical Quenching) without a long dark acclimation period, which allows us to develop robust protocols that take less than 20 seconds. So how is the NPQ(T) parameter derived and how does it compare to the established NPQ parameter?

Tietz et al. out of the Kramer Lab have just published a paper in Plant, Cell and Environment describing the parameter and its derivation. Congratulations!

Read the peer reviewed publication or the story on the Michigan State University’s Plant Research Laboratories Website, Protecting plants from the power of sunlight.

Tietz, S., Hall, C. C., Cruz, J. A., Kramer, D. M. (2017) NPQ(T): a chlorophyll fluorescence parameter for rapid estimation and imaging of non-photochemical quenching of excitons in photosystem-II-associated antenna complexes Plant. Cell Environ. 40(8), 1243–1255. doi:10.1111/pce.12924

The MultispeQ beta’s Future

The first version of the MultispeQ, the MultispeQ beta has been a great instrument, workhorse and proof of concept for the PhotosynQ platform and its utility in phenotyping plants outside the lab in large sample sizes. There are still MultispeQ beta instruments out there which are in use. We have decided with a heavy heart to stop the active development for them, since they have already exceeded their anticipated lifespan and focus our limited resources on the new MultispeQ v1.0.

The MultispeQ beta - Our proof of concept instrument that worked longer and produced more results than we expected.
The MultispeQ beta – Our proof of concept instrument that worked longer and produced more results than we ever expected.

So, what does it mean?

You will still be able to use the instruments and use the existing protocols, as well as create your own new ones. If there will be a change that breaks the compatibility with the Platform, we will give you enough of a heads up, so you can finish your experiments before we release the update. Since all the informations about the instrument is open, we hope that fixes or improvements might be made by the community to extend the instrument’s lifetime.

The Hardware

We are no longer supporting hardware fixes, mainly, because we don’t have parts in stock any more. Pieces like the light guides were custom made and can’t be ordered. Electronic parts can be ordered and we are more than happy to point you to where to source the needed parts. Just let us know and write to Otherwise, we advice you to get the new MultispeQ v1.0 for your future data collection.

The Software

There are no more measurement protocols developed for the old MultispeQ beta. The structure and some of the commands have changed when we introduced the new MultispeQ v1.0 and some of the new features would need a complete re-write of the instruments software (firmware).

We are no longer updating the firmware since we want to focus our limited resources on the current instruments and make sure they receive updates and improvements on a regular bases. As long as the communication protocol doesn’t change, the instruments can be used with the apps and submit data to the PhotosynQ platform.

Thank You!

We would like to say thank you again to all the beta testers not only for testing the MultipseQ beta, but the PhotosynQ platform as a whole. We learned a lot and the new MultispeQ v 1.0 has benefitted from those experiences a lot.

~ The PhotosynQ Team