PhotosynQ Focus: Sonya Lawrence

Focusing on how the community is using PhotosynQ technologies. This month we are highlighting Sonya Lawrence, an Instructor in the Biological Sciences Program at MSU who has been incorporating PhotosynQ into her courses since 2014

As the first summer term came to an end, the hallways of North Kedzie Hall were crowded with BS 172 students displaying their research posters. This year marks three years that Sonya Michaud Lawrence, an instructor in Michigan State University’s Biological Sciences Program, has been using PhotosynQ as an educational tool in her lab classes.

Sonya was one of the first MultispeQ beta testers, beginning way back in the fall of 2014. Sonya uses PhotosynQ has a tool to help students learn the scientific method. Groups of students develop a hypothesis, design an experiment, use PhotosynQ to collect data and then use that data to test their hypothesis and learn statistical methods. Common research questions for her students include comparing how different species, canopy density, cardinal direction, time of day or proximity to fruit affects the photosynthetic efficiency of leaves.

Since Sonya’s first class project, her students have created more than 50 PhotosynQ projects and contributed tens of thousands of measurements. If you want to check out her students work, go the Discover tab on www.photosynq.org, scroll down to the Education section and select see all. Chances are those project were created by her students.

Sonya blog image2

BS 172 student collecting PhotosynQ data on campus with the MultispeQ beta (left). Luke Weaver, Megan Campbell, and teammates present their findings at the BS 172 poster session (right).

As I meandered from poster to poster, talking to the students, a couple of themes kept popping up. Quite a few students mentioned that their results did not match their hypothesis. That’s ok! Happens in science all the time! Other students were impressed by how PhotosynQ made data collection easy, and by the amount of data they could collect in a short period of time. There were a few technical issues–with a couple old beta MultispeQ’s not working properly and measurements with the new MultispeQ’s taking too long because students were not familiar with the open-close start function. But overall, these students had a very different experience from those first brave students, back in the early beta testing days, when the software was still being developed and bugs frequently caused frustrations.

If you are wandering across MSU’s campus in the summer or fall and see students armed with MultispeQ’s and android phones, chances are they are Sonya’s students.

 

Introducing PhotosynQ to Scientists in West Africa

On August 11 – 12, the PhotosynQ team conducted a workshop with researchers from across West Africa in Ouagadougou, Burkina Faso

The Kramer Lab has a cross-cutting grant from the McKnight Foundations Collaborative Crop Research Program, which provides resources for training and supporting local McKnight grantee’s throughout Western, Eastern, and Southern Africa. Using these resources, we were able to bring together members of the PhotosynQ team and 13 researchers from Niger, Mali and Burkina Faso for an intense, 2-day workshop. During the workshop, participants learned how to take MultispeQ measurements, create their own projects and interpret photosynthesis data. Additionally, and again with McKnight support, a number of participants were able to take MultispeQ instruments home from the conference, so that they can start their own PhotosynQ pilot projects.

It was one of the most challenging and fun workshops that I have participated in. On the one hand, the local researchers were very enthusiastic and ready to learn. There was a great mix of plant breeders, crop physiologists, and agronomists. This led to some lively discussion about how photosynthesis measurements, the MultispeQ and the PhotosynQ platform could all be integrated into local research projects, ultimately to the benefit of local smallholder farmers. Hopefully we can find ways to put some of the ideas generated into practice and see what happens!

On the other hand, internet connectivity was very poor, an obvious challenge for a web-based platform. Also, with all of the local researchers hailing from francophone countries, and with my French not extending beyond “bonjour,” the language barrier was a real hurdle. We did have translators who helped fill in the communication gaps, but they were not well versed in plant science lingo. They got a workout!

We look forward to long and productive collaborations with our new friends from West Africa!

 

My leaves are too small, my project is too big and other special cases

We have developed a number of special features that can improve your PhotosynQ experience.

We have tried to build PhotosynQ to be flexible for a variety of different users, projects, goals, etc. Sometimes we have succeeded, sometimes we have not, and sometimes we have succeeded but failed to clearly explain the features that made it successful (which is not very helpful!). In fact, while writing this blog post I was reminded of a feature that we built, but then forgot about!

What kind of flexibility am I talking about?

  • Want to measure leaves that are too small to cover the light guides? You can do that!
  • Want to measure a lot of different plant populations without spending all day scrolling through long lists of multiple choice answers in the field? You can do that!
  • Want to read Barcodes and QR codes with the PhotosynQ apps? You can do that!
  • Want to upload custom data to the PhotosynQ database so you can compare it to your MultispeQ data? You guessed it, you can do that!

To find out how, check out our new special features page.

We hope these features improve your PhotosynQ experiment!

PhotosynQ Focus – Andriy and Nataliia Herts are introducing PhotosynQ in Ukraine

Focusing on how the community is using PhotosynQ technologies. This month we are highlighting Andriy and Nataliia Herts, biologists and beta-testers from Ukraine.

Andriy and Nataliia Herts began beta testing the PhotosynQ platform and MultispeQ instrument at the Ternopil Volodymyr Hnatiuk National Pedagogical University in Ternopil, Ukraine in 2015. Andriy and Nataliia have contributed over 4,400 data points on 13 projects since then, with the help of some of their students (below). Their research investigates the influence light-related parameters on the development, growth, productivity, and biochemical composition of plants in autonomous agroecosystems, like greenhouses, in order to understand the influence of artificial lights (LED lights for example) and ultimately improve growth strategies based on that knowledge. Some other area’s of study include the assessment of seasonal and daily dynamics parameters of the photosynthetic apparatus of Magnolia kobus L., the effect of low temperatures on the primary processes of photosynthesis in Yucca filamentosa and how heavy metals, molybdenum ions, water stress and pest invasion change particular physiological parameters in Phaseolus vulgaris.

Now, they have initiated work on a new project entitled: “Physiological, genetic basis of multi-stepping biotechnology in vitro-ex vitro-in situ to stabilise the populations of rare species.” The studies aim is to better understand the physiological and genetic characteristics of cultured in vitro rare plant species using the MultispeQ instrument and PhotosynQ platform for phenotyping. The goal is to develop multi-stage biotechnology plant adaptation to ex vitro conditions that will further transfer them in natural conditions to stabilize populations and to preserve the gene pool. Andriy and Nataliia plan to conduct multivariate analysis to identify the link between the plants photosynthetic efficiency and pigment concentrations and growth parameters of plants in vitro, their genetic stability / variability and conditions of cultivation. Based on the results, they plan to develop a system of criteria for selection of plants for carrying in ex vitro.

Herts image 2

 

Teachers Workshop at Kellogg Biological Station

I traveled to the MSU K-12 Partnership 2017 Spring Workshop at the Kellogg Biological Station on April 18 with Klara Schnargl. Klara is a Future Academic Scholars in Teaching fellow and she is interested in strengthening the connections between Universities and K-12 education programs. The purpose of the program on this day was to bring graduate students and postdocs from MSU together with middle and high school biology teachers.

Klara and I were going to run a session for teachers who were interested in new, hands on, methods of teaching kids about photosynthesis. We thought that the MultispeQ instrument, combined with the ease of generating simple graphs on the PhotosynQ platform, could be a great way for students to visualize how plants use the light energy they capture and how they respond and regulate photosynthesis in response to their environment.

education blog image

We conducted a really simple experiment with the teachers so they could see PhotosynQ in action. Klara brought along two orchids in small pots and it was a beautiful, sunny spring day. So, we quickly created a project (‘KBS educational module April, 2017’) on www.photosynq.org that asked which session (we had one morning and one afternoon session) was collecting data and whether the plant was inside or outside (2 minutes). Then, after a brief talk about how to connect your phone to the MultispeQ and how to take a quality measurement (4 minutes) the teachers collected some measurements from the orchids in the classroom (5 minutes). Next, we took our orchids out into the sunshine and gave them time to adjust to their new surroundings (2 minutes). After a few more MultispeQ measurements we were heading back into the classroom to check out our data (5 minutes). We logged on to our PhotosynQ project and created a couple of graphs to compare Phi2, PhiNPQ, PhiNO and LEF inside and outside (4 minutes).

In 22 minutes we went from ‘this is MultispeQ’ to ‘look how our orchids regulated incoming light in our experiment.’

The teachers that came to our session were great, with lots of fun ideas on how they could use PhotosynQ in their classrooms and we are looking forward to working with them in the future.