MultispeQ V1.0 Testing Results, Production Delays, PhotosynQ Conference, and other news

Lost of updates this week, but for those who pre-ordered make sure to note that we do have some production delays : .  But before you get angry, make sure to read about some of the fantastic initial results we have using the new instrument!

– Greg

Production Delays

Well, as with many manufacturing pre-order campaigns, I’m sad to say we have some production delays due to the time it took us to arrange financing.  We have our contract manufacturer (Lectronics, based in Saline, MI) ready to do the board manufacturing and assembly, but our injection molder (Diamond Engineering out of Lansing, MI) has a 12 week lead time on the injection molded case.  The good news is everyone has started work, so the clock is ticking and work is moving forward.  There are no showstoppers as of yet (and if you read below you’ll see we have some pretty exciting results from our initial tests of the v1.0 device) so fingers crossed that there are no additional delays from here on out.

We’re shooting to ship in early July… I know that impacts some of your plans for this year, but please stick with us.  We’ve worked really hard to change the way people use and buy this type of equipment by dramatically lowering the price, building a data management platform based on collaboration (not data silos), all while hitting extremely high bars for measurement quality.  And we’ve done it completely outside of the traditional start-up path… it hasn’t been easy, but we’re getting there, and you early supporters are making it happen.

So thank you thank you thank you for your support and patience.  We’ll keep sharing updates with progress as we go – but for now please read below about the new device, it’ll make you happy 🙂

Results: The Amazing MultispeQ V1.0

Ok, enough with the bad news.  Here’s the good news: the new MultispeQ has, at a minimum, 2 – 5 times better raw signal quality than the Beta MultispeQ.  Ok – so what does that mean?

  • Chlorophyll Fluorescence of dilute algae solutions (1 – 5ug / L) – no problem.
  • Measure Proton Motive Force in the field (the accumulation of protons in the thylakoid) IN UNDER 3 SECONDS!  (read more below about this)
  • All your normal field photosynthesis measurements (Phi(II), Phi(NPQ), Phi(NO), SPAD, LEF, etc. etc.) will be lower noise, higher accuracy, and improved repeatability.
  • Slimmer leaf/cuvette clamp for more accurate PAR readings in complex canopies

At this point, we’re working with bare boards (no case), and the test setup looks like this:

Bare board MultispeQ v1.0 in testing. Note the big fat battery!
Bare board MultispeQ v1.0 in testing. Note the big fat battery!

Not very pretty 🙂 , but in our initial tests show very good results.  We had three technical tests to pass for the MultispeQ V1.0 – a standard chlorophyll fluorescence test (Fv/Fm or Phi2 type measurement) using a leaf, the same using dilute algae solutions, and the Proton Motive Force measurement using a leaf.  The Proton Motive Force and algae chlorophyll content measurements required the highest quality detector response, and neither were sufficiently high quality to be usable on the old beta device.  Here’s some comparisons between the old a new (this is the raw detector response, but notice the signal to noise on the graphs).

In the first case (Proton Motive Force) there is a 5.5x improvement in signal to noise, while the second case (Chlorophyl Fluorescence in dilute algae) there is a 2.5x improvement in signal to noise!  That has huge impacts on the ability to collect data quickly and efficiently in the field in a wide range of light conditions.  In addition, these methods are relatively un-optimized, so I expect we can squeak out even better quality by adjusting intensities and timing.  Kudos to our amazing hardware design team which includes Robert Zegarac, Jon Zeeff, and of course David Kramer.

So we can now measure, in a few seconds, Proton Motive Force in the field!  There are no handheld devices that we know of which can collect this data, and certainly none which can do so this quickly.  Only $150k Walz machines, or our own $40k IdeaSpec here in the Kramer Lab, can measure Proton Motive Force at all and they are desktop machines.  We think this is going to add a new set of really important photosynthesis parameters (like ECSt, gH+, vH+…) which may be related to stress, yield, and have broad uses in understanding photosynthetic response.

You can find more about measuring Proton Motive Force, and the new Phi(NPQ) and Phi(NO) parameters here: http://www.ncbi.nlm.nih.gov/pubmed/16228395.

In addition, there are 3 forthcoming papers from the Kramer Lab about the MultispeQ Beta device, PhotosynQ applications in Africa, and the new short method for estimating NPQ (called NPQt).  As soon as they are out, I’ll post them to the blog.

Expect more technical details about MultispeQ V1.0 on our g+ feed as well as in the next blog post.

PhotosynQ Conference, April 22nd!

Register here!

We are organizing the first PhotosynQ conference next month here at Michigan State University in East Lansing, Michigan!  You can sign up via Eventbrite here.  Everyone is invited, but we’ll also livestream the event.  Dan TerAvest (the organizer) will be following up with speakers and topics, but there will be presentations from many beta testers on crop trials, soil measurements, greenhouse and benchtop applications, MultispeQ mods, experimental design and data analysis workshops, and much more.

Well worth the trip for anyone getting a MultispeQ this year, and you’ll save lots of time and improve the quality of your experiments by learning from the experience of the beta testers.

Open Science Hardware Activism

In early March, I helped organize the first Gathering of Open Scientific Hardware, at CERN in Geneva, Switzerland.  Of course I brought the PhotosynQ and talked about our project, but the main goal was to connect with other like-minded developers and scientists who want to make Open Science happen by changing the way we develop tools and technologies used in the lab, the classroom, and field.   A few of my favorite projects (and people!) were Open QCM (a quarts crystal microscope), Safecast (used in Japan to measure radiation during Fukushima disaster), our own MI-based Backyard Brains (neural probes).  In total , there were nearly 50 participants from every corner of the world.

We’re putting together a short manifesto defining Open Science Hardware as a movement, with distinct and important goals related to the broader Open Science community.  If you want to join the discussion, you can find us at the open-science-hardware google group.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.